

Bean Academy webinars

The Michigan Bean Commission (MBC) is pleased to offer a series of free accredited webinars, many with a plantforward eating focus, that cover a broad range of contemporary nutrition and food topics.

Webinars are a blend of research, science and practice to help nutrition professionals stay informed on recent developments on relevant topics.

Webinars are funded as part of a 2020-2021 USDA grant to the Michigan Bean Commission.

• A Handout of the slides presented today is available at: https://MichiganBean.com/hp-webinar-thompson-presn

 The Continuing Education Credit certificate is available to download after the webinar: <u>https://MichiganBean.com/hp-webinar-thompson-ceu</u>

The presenter will answer questions at the end of this webinar. Please submit questions by using the 'Q&A' feature on your computer screen.

Michigan BEAN COMMISSION

Learning Objectives

Upon completion of this webinar participants will be able to:

- Describe what pulses are and how to properly categorize them
- Discuss the health benefits of pulse consumption

Explain what critical thinking is and how to use the process to develop workable solutions to health improvement via increased pulse consumption

Learning Objectives

Upon completion of this webinar participants will be able to:

- Describe a framework for assessing plant food diversity of the diet.
- Discuss what pulses are, how to properly categorize them, and the health benefits of pulse consumption.
- Explain what critical thinking is and how to use the process to develop workable solutions to health improvement via increased pulse consumption

What is Critical Thinking?

Take unstructured information; Structure that information; Do something with it.

Dietary diversity; Dietary Fiber; Gut Health; Obesity

Making Distinctions – which consist of an *identity* and an *other*: What is ?;What is not ____?

Organizing **Systems** – which consists of *part* and *whole*: Does _____ parts? Can you think of ______ as a part?

Recognizing Relationships – which consist of action and reaction: Is related to _____?; Can you think of _____ as relationship? Taking Perspectives – which consist of point and view: From the perspective of ______ (insert question]?; Can you think about ______ from a different point of view?

____ have

Derek Cabrera:<u>https://www.youtube.com/watch?v=dUqRTWCdXt4</u>

What distinguishes pulses from other legumes?

Table 1. Nutritional analysis of 100 kilocalorie portions of the predominant pulses, undried legumes, and oilseed legumes.

	Chickpea	Cowpea	Dry Bean	Snap Bean	Dry Pea	Green Pea	Snap Pea	Lentil	Peanut	Soybean	Edamame
Approximate Amount	-1/3 cup	-1/2 cup	-1/2-1/3 cup	-3 cups	-1/2 cup	-1 cup	-25 cups	-1/2 cup	-2 Tbs	-1/3 cup	-1/2 cup
Protein (g)	5.4	67	67	5.4	72	64	5.7	7.8	4.6	10.6	7.8
Total Lipid (g)	1.6	0.5	0.4	0.8	0.3	0.3	0.0	0.3	87	5.2	2.8
Carbohydrate (g)	167	17.9	18.0	22.5	17.7	18.6	172	17.4	2.8	4.9	11.1
Dietary Fiber (g)	4.6	5.6	6.6	9.1	7.2	6.5	5.9	6.8	1.5	3.5	3.4
Folate (µg)	104.9	179.3	112.9	943	56.0	75.0	MY	156.0	42.3	31.4	MV

Aren't pulses just another vegetable?

	Dry Bean	Cassava	Potato	Carrots	Broccoli	Cucumber
Approximate Amount	~1/2-1/3 cup	~1/3 cup	~2/3 cup	~1.75 cups	~ 2 cups	~5 cups
Protein (g)	6.7	2.7	2.7	2.2	8.4	4.3
Total Lipid (g)	0.4	0.7	0.1	0.5	1.1	0.7
Carbohydrate (g)	18.0	22.6	22.7	23.5	19.7	24.2
Dietary Fiber (g)	6.6	0.7	2.4	8.6	7.7	3.3
Folate (ug)	112.9	MV	30.1	40.0	160.0	46.7

Table 3.	Nutritional an	alysis of 100 kilocale	orie portions of di	ry bean versus o	ther protein	foods.	
	Dry Bean	Chicken Breast, Skin not Eaten	80/20 Ground Beef	Hard-Boiled Egg	Salmon	Almonds, Unroasted	Tofu
Approximate Amount	~1/2-1/3 cup	~2-02.	~1.3-oz.	~1.25 eggs	~2-oz.	~2 Tbs	~3.5-02
Protein (g)	6.7	16.8	8.1	8.1	16.1	3.7	10.0
Total Lipid (g)	0.4	3.1	5.6	6.8	3.5	8.6	5.6
Carbohydrate (g)	18.0	0.0	0.0	0.7	0.1	3.7	2.5
Dietary Fiber (g)	6.6	0.0	0.0	0.0	0.0	22	2.6
Folate (µg)	112.9	4.0	3.1	28.4	3.1	7.6	MV

Dietary fib	er intake for An	nericans is 12	-16g/d, which i	s far from
the require	ment which is 2	28-42g/d; 95%	6 Americans fai	I
TABLE 4 Dietary fiber intal Dietary fiber intake	e of pulse crop by consumer Nonconsumers ¹	s and nonconsumers High consumers ¹	Nonconsumers ²	High consumers
Cereal grains, servings/d	6.5	6.4	5.8	63
Pulse grains, g/d	0	277	0	294
Protein, g/d	80	106	85	101
Fiber, g/d	14	36	17	31
Fiber, g/4184 kJ	7.0	13.6	85	13.8
¹ Data shown are from reference 14				
Data shown are nom reletence to				

Microbiota	Bean	Chickpea	Dry Pea	High Fat	Lentil	Low Fat	Total:
Muribaculaceae	46.117	44,968	44,980	17.972	45,731	42.767	242.534.0
Clastridiales so	28 330	28 3 28	35 101	39.575	14 529	16.833	162 693 7
Bacteroides acidifaciens	26,419	22.023	37,364	6.336	46,216	10.853	149.209.75
Rikenellaceae sp.	23.974	28,454	29,567	3,499	24,231	32,691	142,415,25
Clostridiales	15.275	13,254	13,308	17.608	10,888	56.477	126 809.00
Oscillospirg sp.	6.693	16.758	14,521	32,660	12.167	18,460	101.257.00
Desulfovibrionaceae sp.	18	32	48	90,531	42	46	90,716.25
Bacteroidales sp.	2,908	23,916	8	3	29,149	8	55,990.50
Bocteroides	1.884	6.439	5,710	15,155	1.747	18,986	49,919,75
Alloboculum sp.	2,495	8,824	2,451	3	6,997	3,269	24,038.00
Dorea sp.	75	266	391	3,052	752	10,295	14,830.00
[Ruminococcus] gnavus	563	1,345	1,390	5,794	810	4,743	14,643.75
Akkermansia muciniphila	4,342	197	97	2,324	7,341	67	14,367.50
Loctobocillus sp.	3	83	7	191	19	7,671	7,973.50
Clostridium methylpentosum	370	205	272	2,181	745	2,958	6,730.00
Butyricicoccus pullicoecorum	254	4,379	729	65	1,273	24	6,722.50
Mucispirillum schaedleri	157	301	803	2,237	476	1,557	5,531.25
Dehalobacterium	600	623	393	1,029	480	1,411	4,535.00
Sutterella sp.	979	811	323	16	2,024	10	4,162.50
Clostridium	82	117	15	14	16	3,702	3,944.75
Lactococcus sp.	66	97	140	1,001	89	1,052	2,444.50
Bifidobacterium pseudolongum	3	3	3	3	3	2,282	2,296.50
Turicibacter sp.	3	45	31	3	3	1,733	1,818.00
Clostridiaceae	3	3	3	3	3	1,500	1,514.50
[Mogibacteriaceae] sp.	290	133	340	58	410	100	1,329.50
Christensenellaceae sp.	8	3	8	668	11	369	1,066.00
Peptococcaceae rc4-4 sp.	385	40	89	3	406	3	926.25
Clostridium sp.	357	115	42	3	3	45	564.25
Clostridium colinum	48	13	288	3	3	3	357.75
Alphaproteobacteria RF32 sp.	31	126	62	3	118	3	341.75
Roseburia	38	28	219	3	3	3	293.50
Peptostreptococcaceae sp.	8	15	142	3	3	10	181.25
Anaeroplasma sp.	3	3	3	8	3	70	89.50

between	control	and bean and 43.49	fed rats % in the	OR rat strai	in the O in.	S rat strail			
Diet ¹	Final body weight (g)	Feed efficiency ratio (g)	Retro- periton eal fat ² (mg/m m)	Para- metrial fat (mg/mm)	Peri- renal fat (mg/m m)	Total visceral fat (mg/mm)			
	Obesity Sensitive (OS)								
Control	230	0.321	77.1	185.6	25.9	288.6			
Bean	226	0.323	67.5	136.9	13.8	218.2			
			Obesity	Resistant (OF	र)				
Control	166	0.251	38.5	88.2	14.2	140.8			
Bean	164	0.260	25.1	59.9	5.7	90.7			

Key Takeaways

- A high quality healthy diverse diet: whole food maximized
 High botanical diversity score (think the tree)
 - Rich in pulses
- Dietary fiber-gut health-human health: mind the gap!
- Dose matters (49g protein, 49g fiber, 700kcal)
 It's easy, safe, affordable...and I like it!

References

- Thompson, H.J.; Levitt, J.O.; McGinley, J.N.; Chandler, P.; Guenther, P.M.; Huybrechts, I.; Playdon, M.C. Measuring Dietary Botanical Diversity as a Proxy for Phytochemical Exposure. Nutrients 2021, 13, 1295.
 Didinger, C. & Thompson, H.J. Defning Mutritional and Functional Niches of Legumes: A Call for Clarity to Distinguish a Future Role for Pulses in the Dietary Guidelines for Americans. *Nutrients* 13, doi:10.3390/nu13041100 (2021).
- . .
- doi:10.3390/nu13041100 (2021). McGinley J. N. et al. Pulse Crop Effects on Gut Microbial Populations, Intestinal Function, and Adiposity in a Mouse Model of Diet-Induced Obesity, Nutrients 12, doi:10.3390/nu12030593 (2020). Didinger, C. & Thompson, H. Motivating Pulse-Centric Eating Patterns to Benefit Human and Environmental Well-Being, Nutrients 12, doi:10.3390/nu1213500 (2020). Thompson, H. J. Improving Human Dietary Choices Through Understanding of the Tolerance and Toxicity of Pulse Crop Constituents. Curr Opin Food Sci 30, 93-97, doi:10.1016/j.cofs.2019.01.001(2019). Thompson, H. J. Dietary Bean Consumption and Human Health. *Nutrients* **11**, doi:10.3390/nu11123074 (2019).
- Neil, E. S. et al. White Kidney Bean (Phaseolus Vulgaris L.) Consumption Reduces Fat Accumulation in a Polygenic Mouse Model of Obesity. Nutrients 11, doi:10.3390/nu1112780 (2019). Myers, J. R. et al. Improving the Health Benefits of Snap Bean: Genome-Wide Association Studies of Total Phenolic Content. Nutrients 11, doi:10.3390/nu11102509 (2019).

References

- Moghaddam, S. M. et al. Genetic Architecture of Dietary Fiber and Oligosaccharide Content in a Middle American Panel of Edible Dry Bean. Plant Genome 11, doi:10.3835/plantgenome2017.08.0074 (2018).
 Thompson, H. J., McGinley, J. N., Neil, E. S. & Brick, M. A. Beneficial Effects of Common Bean on Adiposity and Lipid Metabolism. Nutrients 9, doi:10.3380/nu0900998 (2017).
- .
- .
- .
- Adiposity and Lipid Metabolism. Nutrients 9, doi:10.3390/nu090998 (2017). Wiesinger, J. A. et al. Demonstrating a Nutritional Advantage to the Fast-Cooking Dry Bean (Phaseolus vulgaris L.) J. Agric Food Chem 64, 8592-8603, doi:10.1021/acs.jafc.6b03100 (2016). Thompson, H. J. & Brick, M. A. Perspective: Closing the Dietary Fiber Gap: An Ancient Solution for a 21st Century Problem. Adv Nutr 7, 623-626, doi:10.3945/an.115.009969 (2016). Chen, Y., McGee, R., Vandemark, G., Brick, M. & Thompson, H. J. Beitray Fiber Hanayisis of Four Pulses Using ADAC 2011.25: implications for Human Health. Nutrients 8, doi:10.3390/nu8120829 (2016). Kleintop, A. E., Echeverra, D., Brick, L. A., Thompson, H. J. Beitray Fiber Analysis of Four Pulses Using ADAC 2011.25: integrated total dietary fiber assay to determine the dietary fiber and oligosaccharide content of dry edible beans. JAgric Food Chem 61, 9719-9726, doi:10.1021/f4030184 (2013). Zhu, Z., Jiang, W. & Thompson, H. J. Edible dry bean consumption (Phaseolus vulgaris L.) modulates cardiovascular risk factors and diet-induced obesity in rats and mice. Br J Nutr **108 Suppl 1**, S66-73, doi:10.1017/S0007114512000839 (2012).

References

- Thompson, M. D. & Thompson, H. J. Physiological effects of bean (Phaseolus vulgaris L.) consumption on cellular signaling in cancer. *Cell Cycle* **11**, 835-836, doi:10.4161/cc.115.19676 (2012).
 Thompson, M. D. *et al.* Cell signaling pathways associated with a reduction in mammary cancer burden by dietary common bean (Phaseolus vulgaris L.). *Corcinogenesis* **33**, 226-232, doi:10.1093/carcin/bgr247 (2012).
 Mensack, M. M., McGinley, J. N. & Thompson, H. J. Metabolomic analysis of the effects of edible dry beans (Phaseolus vulgaris L) on tissue lipid metabolism and carcinogenesis in rats. *Br J Nutr* **108** Suppl **1**, 5155-165, doi:10.1017/S0007114512000827 (2012).
 Denside J. & Dane, S. D. & Beich M. A. & Thompson, H. J. Nietworks have effect an heavity exercision of the effects of edible dry beans (Phaseolus 2002).
- Los, doi: 10.1027/300071431200067 (2012). Daniell, E.L., Ryan, E.P., Brick, M. A. & Thompson, H. J. Dietary dry bean effects on hepatic expression of stress and toxicity-related genes in rats. Br J Nutr 108 Suppl 1, S37-45, doi:10.1017/S0007114512000815 (2013).
- (2012). Mensack, M. M. *et al.* Evaluation of diversity among common beans (Phaseolus vulgaris L.) from two centers of domestication using 'omics' technologies. *BMC Genomics* **11**, 686, doi:10.1186/1471-2164-11-686 (2010). Mensack, M. M., Fitzgerald, V. K., Lewis, M. R. & Thompson, H.J. Characterization of low molecular weight chemical fractions of dry bean (Phaseolus vulgaris) for bioactivity using Caenorhabditis elegans longevity and metabolite ingerprinting. *J Aqric Food Chem* **58**, 6637-6705, doi:10.1021/f1007383 (2010). Thompson, M. D. *et al.* Mechanisms associated with dose-dependent inhibition of rat mammary carcinogenesis by dry bean (Phaseolus vulgaris, L.). *J Nutr* **138**, 2091-2097, doi:10.3945/jn.108.094557 (2008). .
- .

MBC Bean Academy webinar details

 Continuing Education Credit certificate is available at: <u>https://MichiganBean.com/hp-webinar-thompson-ceu</u>

 A recording of today's webinar will be available to download at: https://MichiganBean.com/hp-webinar-thompson-presn

For questions: <u>MBC.BeanAcademy@gmail.com</u>

Anatomy of the Bean: Dry Bean Breeding and Production for Consumer Acceptance

> Karen Cichy, PhD Research Plant Geneticist USDA, Agriculture Research Service Michigan State University

Date: June 17, 2021 2-3 pm EDT/1-2 pm CDT/noon MDT Applied for 1 CPE (Level 2) by the Commission on Dietetic Registration

